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Abstract—This paper presents an original feature vector
extraction process based on the Delaunay triangulation (DT)
and a zoning technique. The presented work provides an
illustration of the equivalency between a zoning and the
Delaunay triangulation in the context of handwritten character
recognition. A novel technique that relies on the approximation
of a DT and an automatic pruning calculation is introduced.
We call this technique the α-approximation. To discuss our con-
tribution, experiments are conducted on the MNIST database
of handwritten digits using a support vector machine classifier
for the classification task.

I. INTRODUCTION

Optical character recognition (OCR) is the process that
converts scanned documents, either printed or handwritten,
into electronic versions. Typical uses are content-based
document search or document classification. OCR field has
been active for several decades, leading at the present time
to efficient recognition systems, especially for isolated char-
acters. However, due to the large variability of scriptwriters,
and therefore of handwritten patterns, the recognition of
handwritten characters still remains an open problem [1].
It is a difficult task as it relies on the relevance of the
combination: image type, feature vector and classifier.

In the domain of machine learning, objects classifying
is a very typical task. A canonical scenario consists of
training a model on a given data set, for which we know
the actual label of each element. After this learning phase,
classification of unknown objects can be proceeded. In the
context of OCR, the description of the characters in a manner
suitable for classification is a crucial issue as it depends on
the quality of the low-level information extracted. Moreover,
the specificity of the used classifier is an arguable point.
Regarding the former problem, which we address in this
paper, the common scheme for isolated character recognition
is composed of: (i) the description of the characters by
a set of features (typically) embedded into a vector, (ii)
the classification of the characters, described in the space
of the feature vectors. Many features have been proposed
and used for character recognition [2]. Popular ones can
be categorized in the following three types: (i) Statistical

features that describe the distribution of points (e.g. zoning,
projections, profiling techniques), (ii) Structural features that
describe geometrical properties of the character (e.g. holes,
loops, branch points, strokes), (iii) Space transformation
based features (e.g. Fourier transform, moments). The meth-
ods we propose and discuss in this paper extract zoning-
based statistical features, computed out of the pixels of the
character on one hand, and out of the Delaunay triangulation
(DT) of these pixels on the other.

One of the objectives of this paper is to provide an
illustration of the equivalency between the compressed
quadtree structure and the DT of a planar point set [3], in
the context of handwritten character recognition. For this
purpose, we present and compare two methods of feature
extraction. The first one is based on a classical uniform
static zoning technique, which we can assimilate to the
compressed quadtree structure [4], and the second one is
based on the construction of the DT.

Another objective is to provide a method extracting fea-
tures which tend to carry local and less local information
of an handwritten character. To achieve this objective, the
introduced zoning technique concatenates the statistical in-
formation retrieved from uniform zonings that were operated
on several levels of resolution. We call this concatenation
process multilevel zoning. Besides, the introduced DT-based
feature extraction method exploits the information carried
by the simplices of the DT. Indeed, the DT allows to embed
both density and shape information of the character. As
well, in dimension 2, the number of simplices equals at
most 6n, with n the number of input points [5]. Thus, the
construction of the DT allows to upsample the input data
point set, enriching then the amount of information to be
considered in the feature vector extraction process.

The rest of the paper is constructed as follows. In the next
section, we briefly recall some basic concepts about the DT,
and define the notion of α-approximation of a DT. In Section
III, we formally define the zoning technique, the neighbor-
hood strategy, the proposed multilevel zoning method and
the α-approximated DT-based method. In Section IV, we
present the experimental results we achieved and discuss the
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efficiency of the proposed method. We conclude in Section
V.

II. α-APPROXIMATION OF THE DELAUNAY
TRIANGULATION

A. Delaunay triangulation
The Delaunay triangulation (DT) [5] is a widely-used

structure that allows to grasp geometrical and topological re-
lationship between given d-dimensional points. Let z1, ..., zn
be points in S ⊆ Rd and let Vi be the Voronoi cell of zi,
composed of all the points in Rd for which zi is the closest
element: Vi = {x ∈ Rd| �x− zi� ≤ �x− zj� , ∀j �= i}.
Vi is the intersection of n− 1 hyperplanes and the Voronoi
Diagram of S is the set of the Voronoi cells VorS = {Vi|1 ≤
i ≤ n}. The Delaunay triangulation of point set S, DT (S),
dual to the Voronoi diagram, is defined by connecting every
two points for which their associated Voronoi cell share a
common face. We consider here the points of S in a non-
degenerate configuration, i.e. there is no d+ 2 points lying
on any circumscribed hyper-sphere. From now on, we call
triangles the 2-simplices.

B. α-approximation with triangles exclusion
Let S be a pixel point set associated to a given character.

We present here the α-approximation of DT (S) and the
proposed triangle-pruning strategy. Before defining what an
approximation is, we first note that there are two types of
triangles, depending on whether they are inside or bridging
(inner or outer) gaps between parts of the character. The
triangles inside the character present significantly lower
perimeter values and the ones bridging gaps present more
heterogeneous edges length distribution as along with a
larger perimeter. On the criterion of the perimeter value or
the so-called heterogeneity, it is thus possible to construct an
ordering that discriminates the two types of triangles. This
measure-dependent ordering provides a basis on which we
define a triangle-pruning strategy: the higher the value of
the measure, the more the associated triangle is prone to
be pruned. This ordering implicitly defines a basis for the
approximation of the actual DT (S).

Let Σ > 0 be the number of simplices of DT (S) and µ a
measure defined on the triangles of DT (S). Given measure
µ and triangles (si)1≤i≤Σ of DT (S), we define O

DT (S)
µ the

ordered set of scalar values

O
DT (S)
µ = {α1, ...,αΣ}

for which 0 < αi ≤ αi+1 < +∞ and αi = µ(si), ∀i ∈
[1,Σ[. Given the set O

DT (S)
µ , we then define the set of

triangulations I = {DT (S)α1 , ..., DT (S)αΣ} where each
DT (S)α is a Delaunay triangulation associated to the
pruning value α. Each triangle s of DT (S)α is such that
µ(s) ≤ α. As a consequence, we note that αi ≤ αi+1 ⇒
DT (S)αi ⊆ DT (S)αi+1 . It follows that the triangulations
of I are such that DT (S)0 ⊆ DT (S)α1 ⊆ ... ⊆ DT (S)αΣ .

0
20

40
60

80
100

120

20 40 60 80 100 120

V
1

V2

0 200 400 600 800 1000

0
20
00

40
00

60
00

80
00

10
00
0

12
00
0

Index

m
y_

m
ea

su
re

_O
C

R
_P

E
R

IM
E

TE
R

[, 
1]

0 200 400 600 800 1000

0
10
00

20
00

30
00

40
00

50
00

60
00

Index

m
y_

m
ea

su
re

_O
C

R
_H

E
TE

R
[, 

1]

0
20

40
60

80
100

120

20 40 60 80 100 120

V
1

V2

0 100 200 300 400 500 600

0
50
00

10
00
0

15
00
0

Index

m
y_

m
ea

su
re

_O
C

R
_P

E
R

IM
E

TE
R

[, 
1]

0 100 200 300 400 500 600

0
20
00

40
00

60
00

80
00

HETER -- 5

Index

m
y_

m
ea

su
re

_O
C

R
_H

E
TE

R
[, 

1]

Figure 1. Delaunay triangulation and the measures of the triangles.
Delaunay triangulation computed on two characters (left) from the MNIST
handwritten digits database and their respective ordered set ODT (S)

µ with
µ = µperim (center) and µ = µheter (right).

DT (S)0 equals the original point set S and DT (S)αΣ the
original triangulation DT (S). A given value α ∈ O

DT (S)
µ

thus defines the α-approximation of DT (S), with respect
to measure µ, as DT (S)α contains no triangle for which
the measure is greater than α. The efficiency of the α-
approximation of DT (S) relies on the correct association
of a measure to the structure of the triangulation. As
the approximation procedure goes along with pruning, this
measure may exhibit geometrical information [6]. In order
to investigate which triangles of DT (S) do carry relevant
information of the character, we studied the impact of two
pruning measures on the classification process results. Given
a triangle s and its edge set Es, we studied the perimeter
and heterogeneity:

µperim(s) =
�

e∈Es

|e| , µheter(s) = µperim(s) ∗ maxEs

minEs
.

Derived from discussion in [6], measure µheter gives higher
values to triangles which are longer and which bridge inner
or outer gaps of the character. These triangles tend to
have higher values for both µperim and µheter. The latter
measure allows to differentiate triangles which present equal
perimeter values by pruning first the ones which bridge gaps
of the character as the bridging-gap triangles tend to present
more heterogeneous edge length distribution. This remark is
illustrated in Figure 1.

C. Computation of α∗, a heuristic

Given the shapes of the curves presented in Figure 1,
finding inner triangles boils down to finding all the ones
presenting a lower perimeter and heterogeneity value. In
order to study the influence of the triangles outside of the
character on the classification task, we propose the following
strategy. We define a curvature criterion on the ordered set
O

DT (S)
µ ,

γ(x) =
y��

(1 + y�2)3/2
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Figure 2. α-approximation and optimal pruning. (From left to right)
DT (S), selected i∗ (red dot) with the perimeter pruning measure and the
α∗-approximation of DT (S).

where x ∈ [[1,Σ]] and y ∈ O
DT (S)
µ , y�, y�� define the mea-

sured values, the first and second derivative of y respectively.
We set as a pruning strategy the exclusion of every

triangles whose index is greater than i∗, the index of optimal
α∗. A naive strategy may consist in finding the index of the
maximum curvature value in O

DT (S)
µ but it may result in

favoring indices associated to high values. To bypass this
problem, we define the set of windows W = ∪i∈[[1,Σ−m]]Wi,
where Wi = {wi

1, ..., w
i
m}. wi

k ∈ [[1,Σ]] are the indices of
window Wi and m is the size of the windows. It follows
that i∗ = argmaxi∈{1...|W |} γi, where |W | = Σ−m+ 1 is
the number of windows defined on O

DT (S)
µ and

γi = γ(Wi) =
1
m

�
w∈Wi

γ(w)

max
w∈Wi

γ(w)
.

The introduced curvature criterion γi allows then to select
the maximum curvature of the curve according to input
parameter m. An illustration of α-approximation following
the presented strategy is given in Figure 2, along with the
position of the associated α∗ in the curve.

III. ZONING BASED FEATURE VECTOR EXTRACTION
PROCESS

A. The zoning technique
Zoning is a well-known region-based feature extraction

technique in pattern recognition field. Several zoning meth-
ods have been proposed, using uniform and non-uniform
grids. More recently, zoning design has been considered
as an optimization problem, resulting in various dynamic
zoning design techniques [7]. Zoning technique applied to
handwritten character recognition has given very relevant
results [7], leveraging the region-based feature extraction ap-
proaches ability to handle a large variability of handwritten
patterns.

Let I be an image. A static uniform zoning method define
an M ×N axis-aligned regular grid layered on I . A zoning
method can be considered as a partition of I into M × N
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Figure 3. Neighborhood strategies. Possible vectors ν(c) for a given cell
c ∈ G3, regarding the 3 proposed neighborhood strategies.

zones or cells. We define a grid Gk = {ckij , ∀i, j ∈ [1..2k]},
with k the order of the zoning. Each cell ck ∈ Gk provides
statistical information of a part of I .

Classical zoning methods calculate the number of ele-
ments inside each cell of the grid. This information can be
enhanced by taking into account the density of the points in a
neighborhood of a given cell ck. We define a 8-neighborhood
centered around ck: N(ck) = {ckv , ∀v ∈ [1..V ]}, with
V ∈ {3, 5, 8}, depending on the position of ck in Gk, i.e.
in a corner, along the border or inside respectively. We note
ν(ck) the vector containing the retrieved information for the
cell ck, µcell the measure extracted within the cell ck and
|ck| the number of elements inside ck.

B. The neighborhood strategies
Three neighborhood strategies have then been studied to

fill the vector ν(ck): the NO NEIGHBORHOOD strategy,
which put |ck| in ν(ck), the VALUES strategy, which ap-
pends |ck| to {|c|, ∀c ∈ N(ck)} in ν(ck) and the MEAN
strategy, which appends |ck| to the mean value of µcell over
ck ∪ N(ck) in ν(ck). The size of vector ν(ck) regarding
the first, second and third strategy is 1, |N(ck)| + 1 and
2 respectively. Figure 3 illustrates the feature extraction for
one cell.

Finally, the vectors ν(ck) are appended to build the feature
vector FV k, which is the actual descriptor of Gk. The
size of vector FV k is 22∗k,

�
ck∈Gk(|N(ck)| + 1) and

22∗k+1 for strategies NO NEIGHBORHOOD, VALUES and
MEAN respectively. The defined MEAN strategy provides
an acceptable trade-off between the size of FV k and the
amount of embedded neighborhood information.

C. The multilevel zoning
For a given order k, the defined feature vector FV k

constitutes a global descriptor of the image I . We propose
to enhance the description of I by embedding information
at several levels of resolution. A multilevel approach is
introduced. For a given order K > 1, K vectors FV k

are computed for every k in [1..K]. These vectors are
then appended to build the actual feature vector FV of I .
Therefore, the size |FV | of vector FV is

�
k∈[1..K] |FV k|.
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Figure 4. The multilevel zoning technique based feature vector
extraction. Construction of the final feature vector FV for K = 3.

For K = 3 and the MEAN strategy, |FV | = 2 × (23 ×
23) + 2 × (22 × 22) + 2 × (21 × 21) = 168. Figure 4
illustrates the multilevel zoning feature vector construction.
It is important to note that using the multilevel approach
|FV | grows exponential with respect to K. In this paper,
we classically set the number of elements in a cell ck ∈ Gk

as a measure, i.e µcell(ck) = |ck|.

D. The α-approximated DT and input data selection

We finally present the construction of a feature vector
based on the α-approximated DT. As illustrated in Figure
2, the α-approximation of the DT tends to exhibit triangles
describing the inner part of a character, regarding the mea-
sure µperim and a pruning value α∗. Measure µheter tends
to as well. Once the α-approximation is built, the previously
defined zoning technique is used to construct the actual DT-
based feature vector FV k. We consider two types of input
elements for a given cell ck. First, the centers of gravity
of each triangles. Secondly, both raw data (i.e. input points
that describe a character) and centers of gravity are taken
into consideration. This allows to upsample the input data
point set, enriching then the amount of information to be
considered in the feature vector extraction process.

IV. EXPERIMENTS.

A. Dataset and pre-processing

Experiments were carried out on the 10 digit classes of
the MNIST isolated handwritten database1. Each image has
been cropped to the bounding box of the digit, deleting
the white border, and has been surrounded with a 1-pixel
margin. To allow the study of more orders of zoning, each
sample has then been magnified to have a final size of

1http://yann.lecun.com/exdb/mnist/

Table I
COMPARISON OF THE ACHIEVED RECOGNITION RATES FOR ORDER

K = 4 WITH RESPECT TO THE NEIGHBORHOOD STRATEGY.

Strategy NO NEIGHBORHOOD VALUES MEAN
Recognition Rate 93,99 95.21 96.41

(|FV 4|) (256) (2116) (512)

128×128. Finally, a skew and slant normalization has been
done using the method proposed in [8]. The average number
of black pixels over the 5000 images of the 10 classes is
4362. Throughout the presented experiments, we reduced
the size of the input data points to 10% by selecting a data-
representative subset using k-means algorithm. A Gaussian
Kernel with Radial Basis Function SVM classifier2 has been
trained and recognition rates have been obtained using a 5-
fold cross-validation technique.

B. Feature Extraction: multilevel zoning technique vs. DT
The introduced neighborhood strategies are first discussed.

We set here the order value K to 4, as (i) it allows to build
a feature vector of a reasonable size and (ii) Table II reports
that the recognition rates decrease from K = 5. As exposed
in Table I, the best compromise between the size of the fea-
ture vector and the recognition rate is provided by strategy
MEAN. Let us compare now the zoning based descriptor
to the DT-based one. The objective here is to provide an
illustration of the equivalency between the classical feature
extraction zoning technique processed on the raw data and
the introduced DT-based feature extraction. This objective is
inspired by results presented in [3]. As we can observe in
Table II, the recognition rates achieved from the DT-based
zoning technique (DT NO ML) are equivalent to the ones
from a classical zoning technique (NO DT NO ML), as an
expected result derived from [3]. Indeed, we can observe
that the recognition rates growth behave the same. These
remarks hold in the multilevel case (ML).

C. Exploiting the α-approximation of the DT
Let us now investigate the information carried by the DT

itself. The objective here is to study the impact of the shape

Table II
RECOGNITION RATES ACHIEVED FOR THE CLASSICAL ZONING

APPROACH AND THE DT-BASED ONE WITH THE STRATEGY MEAN.

ORDER 1 2 3 4 5
DT NO ML 56.77 91.73 95.60 95.94 95.40
(vect. size) (8) (32) (128) (512) (2048)

Growth rate (%) - +61.59 +4.22 +0.36 -0.56
NO DT NO ML 57.38 92.09 96.17 96.41 96.21

(vect. size) (8) (32) (128) (512) (2048)
Growth rate (%) - +60.49 +4.43 +0.25 -0.2

DT ML 56.77 91.28 95.45 96.12 96.37
(vect. size) (8) (40) (168) (680) (2728)

Growth rate (%) - +60.79 +4.57 +0.70 +0.26
NO DT ML 57.38 91.81 96.05 97.19 97.13
(vect. size) (8) (40) (168) (680) (2728)

Growth rate (%) - +60 +4.62 +1.12 -0.06
2http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
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Table III
INFLUENCE OF THE INPUT POINTS, THE PRUNING MEASURE AND THE

PRUNING VALUE ON THE RECOGNITION RATE WITH THE STRATEGY
MEAN. THE RATES WERE COMPUTED FOR ORDER K = 4.

µ perimeter heterogeneity
α 0 0.1 0.5 α∗ 0 0.1 0.5 α∗

CG 96.2 96.1 89.1 94.4 96.2 96 94.8 96.3
CG RD 96.6 96.5 94.9 96.2 96.6 96.3 96.2 96.6

and position of the triangles on the recognition rate. As well,
we conduct a comparison between taking into account or
not the raw data points as an input of the feature vector
extraction process.

Table III reports the sensitivity of the recognition rate
regarding the following three points: (i) setting the centers
of gravity of the triangles along with the raw data (CG RD)
as an input of the feature vector extraction process or the
centers of gravity alone (CG), (ii) setting µperim or µheter

(defined in Section II.B.) as a pruning measure, (iii) the
value α of the pruning measure. For α∗ calculation, we set
the size of windows Wi to Σ

10 with Σ the number of triangles
of DT (S).

We can observe that, regardless the pruning measure and
the pruning value, the results obtained by considering the
input points along with the computed centers of gravity
gives the best results. This is an expected consequence
of enriching the geometrical information carried by the
triangles along with the one of the input points. Note that the
recognition rate values are the same for the two measures
when α = 0 as no pruning is done. The results reported
in Table III also highlight the fact that the heterogeneity
pruning measure gives better results than the perimeter one
does. This confirms the fact that the ordering based on the
heterogeneity measure allows to keep more relevant trian-
gles from the DT: large and heterogeneous-edges-presenting
triangles are pruned first. Furthermore, Table III shows that,
whatever the measure, the recognition rate decreases as the
value of α grows, as an expected consequence of pruning
more and more triangles. For the heterogeneity measure, the
best score is achieved using the proposed α∗-approximation
of the DT. Table IV exposes the precision and recall values
per class. Class 7 presents the lowest value of precision and
is the most predicted class. Class 9 presents the lowest recall
value and is the most misclassified one.

Note that for the perimeter measure, α* underperforms
the other values of α. This can be explained by the fact that
the implied ordering is prone to put for deletion triangles
which are part of the inner part of the characters. Besides,
we suspect that a better tuning of the α∗ calculation for
the perimeter measure might sort this problem out, as the
proposed heuristic experimentally pruned more triangles for
this measure.

V. CONCLUSION

The presented work provides an illustration of the equiv-
alency between the quadtree structures and the Delaunay

Table IV
COMPARISON OF THE ACHIEVED PRECISION AND RECALL VALUES FOR
EACH DIGIT COMPUTED FOR: THE STRATEGY MEAN, CG RD INPUT

POINTS, HETEROGENEITY PRUNING MEASURE AND PRUNING VALUE α∗ .

DIGIT 0 1 2 3 4
Precision (%) 99.2 96.4 96.8 97.3 94.8

Recall (%) 97.8 97.4 96.8 96.4 96
DIGIT 5 6 7 8 9

Precision (%) 96.6 98 94.5 97.5 94.7
Recall (%) 97.2 98.8 96 95.1 94.3

triangulation in the context of handwritten character recog-
nition. Indeed, the non multilevel zoning and the DT-based
zoning techniques provided equivalent results as they both
encapsulate equivalent information. We proposed a feature
extraction process based on a novel and promising tech-
nique: the α-approximation of a DT. This technique relies
on the association of a measure and a pruning technique. An
automatic pruning value strategy has been provided as well.
Experiments showed that leveraging information carried by
the DT slightly improves the recognition rate. Future works
will focus on studying new pruning measure µ and extracting
information regarding topological configuration of the gaps
outside the character.
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